RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. SECOND SEMESTER (January – June) 2013 Mid-Semester Examination, March 2013

: 04/03/2013 Date Time

CHEMISTRY (Honours) Paper : II

: 11 am – 1 pm

Full Marks : 50

[1]

[2]

[2]

 $[2\times4]$

 $[4 \times 2]$

[Use Separate Answer Books for each group]

<u>Group – A</u>

(Answer any one question)

a) The ΔH_f of CaF is negative yet we always get CaF₂ during preparation of calcium fluoride from 1. calcium and fluorine. [2]

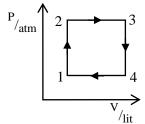
 ΔH_s of Ca = 210; Lattice energy of CaF = -795; I₁ of Ca = 590; ΔH_D of F₂ = 160; ΔH_{FA} of Cl₂ = -

335; ΔH_f of CaF₂(S) = -1243 [All data are in KJ mol⁻¹]

- b) Comment on the hydration energy of F^- and K^+ ion (Both have similar ionic radii) [2]
- c) Establish the Born-Haber cycle for the formation of $NH_4Cl(c)$ from N_2 , H_2 and Cl_2 . [1]
- d) Carry out the valence bond treatment on H_2 . **Or**, Write notes on Resonance and delocalisation. [4]
- What are the limitations of the concept of Resonance in VBT. e)
- Explain the following (any four) : f)
 - i) Lithium does not form alum
 - ii) Lithium is sometimes referred to as super alkali metal.
 - iii) CsF is more soluble in water than LiF
 - iv) Alkali metals are good reducing agents
 - v) Alkali metals soluble in liquid ammonia are very useful reagents.
 - vi) Alkali metals form Crown ether complexes more easily than alkaline earth metals.

a) Explain the higher electrode potential (reduction) of $\frac{1}{2}F_2|F^-$ couple ($E^\circ = 2.87$ V) than that of 2.

 $\frac{1}{2}$ Cl₂ | Cl⁻ couple (E° = 1.33 V) though electron affinity of chlorine is greater than fluorine. [2]


- b) Arrange in the increasing order and explain the solubility of phosphate and perchlorate salt of lithium, sodium and potassium. [2]
- Explain the solubility and insolubility of an ionic solute in water in terms of free energy change, c) heat of solution at infinite dilute solution and entropy change. [2]
- Mention the hybridisation of BeCl₂ and BF₃. d)
- What do you mean that the resonance energy of CO_2 is 154 KJ mol⁻¹? e)
- f) Answer **any two** from the followings :
 - A. Why ortho and para hydrogen is known as nuclear spin isomers? Compare and contrast the properties of ortho and para hydrogen.
 - B. Write a short note on Hydrides.
 - C. i) Why the alkali metals have very little tendency to form complex compounds.
 - ii) Write note on Heavy water.
 - D. What happens when (any two) :
 - i) Sodium ferro cyaride reacts ferric sulphate.
 - ii) Sodium sulphide reacts with sodium nitroprusside.
 - iii) Sodium thiosulphate solution is added separately to $AgNO_3$ and $FeCl_3$ solution.

<u>Group – B</u> (Answer <u>any one</u> question)

3.	a)	i) Convert (S) -2 - pentanol to (R) -2 - pentanol [2]]
		ii) Explain what is meant by primary kinetic isotope effect. Give the mechanism of oxidation of	
		2-propanol with chromic acid. Indicate whether kinetic isotope effect is operative here. Cite a	1
		labelling experiment and its result in favour of your answer.[4iii) The reaction rate of CH ₃ I with NaN ₃ at 0°C increased several fold on transfer from methanol	1
		to DMF as solvent. —Explain [2]
	b)	Complete the following reactions and give mechanism in each case and mention stereochemistry of	
		products (if any): [2×2]
		i) cis – 1,2 – dimethylcyclohexene + H ₂ $\xrightarrow{Pt, heat}_{1 \text{ atm}}$	
		ii) cyclohexene $\xrightarrow{\text{Br}_2/\text{CH}_2\text{Cl}_2}_{25^\circ\text{C}}$	
	c)	Give the product for each of the following reaction with reason : $[2\times 2$]
		i) $F_3C - CH = CH_2 + HCl \rightarrow$	
		ii) MeO-CH = CH ₂ + HCl(aq) \rightarrow	
4.	a)	List the carbocations in order of decreasing stability [2	,]
		$CH_3CH_2\overset{+}{C}CH_3$; $CH_3CH_2CH_2\overset{+}{C}H_2$; $CH_3CH_2\overset{+}{C}HCH_3$	
		CH ₃	
	b)	What alkene should be used to synthesize 3-bromohexane? Give reason.[2]]
	c)	Give the major product of each of the following reactions and give their mechanisms. $[2\times 2$,]
		i) H_2O, H^+ ii) HBr peroxide	
	d)	i) Comment on the following S_N^2 reaction rate with Γ . [2.5	ן
	ŗ	alkyl chloride relative rate	-
		\downarrow 0.02	
		₩ _{Cl} 79	
		Ph Cl 200	
		ii) Predict the product of the following reaction showing mechanism : [2.5]
		$(R) - \alpha - phenylethanol \xrightarrow{SOCl_2} ether \rightarrow$	
		iii) Give the IUPAC nomenclature of the following compounds : [3]
		$A. \land \land \land \circ $	
		B.	
		0	
		C. NC \sim CN	
		CN	

<u>Group – C</u> (Attempt all questions)

- 'Heat engine and refrigerator are acting in the reverse manner.' Justify this describing the working 5. a) principle of both (outline). [2]
 - The working of a heat engine is shown as follows **b**)

If the working substance in the engine is 1.00 mol of a monatomic ideal gas and the cycle begins at 1 and goes clockwise, [Given, $P_1 = 1.00$ atm, $V_1 = 24.6$ lit, $P_2 = 2.00$ atm and $V_3 = 49.2$ lit]

- i) Calculate the work available in a complete cycle.
- ii) Also indicate which parts of the cycle involve heat flows into the gas and calculate the efficiency of the engine in one cycle. [1+2]
- What is 'Clausius inequality'? State its implication. c)

Or

- 6. a) Derive the expression for the efficiency of a Carnot engine directly from a TS diagram.
 - b) One mole of an ideal gas at 300K is isothermally compressed by a constant external pressure equal to the final pressure maintained in 10.0 Lit. vol. Initial pressure was due to volume 25.0 Lit. The temperature of the surroundings in 300K. Calculate $(\Delta S)_{sys}$, $(\Delta S)_{surr}$ and $(\Delta S)_{universe}$. Comment on the spontaneity of the process.
 - Comment and explain in favour of your answer —Two adiabatic curves donot cross each other. [2] c)
- A radiation of wave length λ is incident upon a metal surface. The wave length of the scattered 7. a) radiation is λ' . Prove that $\lambda' - \lambda = \frac{h}{m_e C} (1 - \cos \theta)$ where θ is the angle of scattering. [5]
 - Explain whether the following functions could be considered as 'well behaved wave-function' for b) Schrodinger equation :

i)
$$\psi(x) = e^{-|x|}$$

ii) $\psi(x) = A \sin \alpha x$ in the range $0 < x < L$ [1½×2]

Or

Explain the physical significance of $|\psi^*(x,t)\psi(x,t)|$ 8. a)

b) Show that
$$\int \psi^*(x,t)\psi(x,t)dx$$
 is independent of time. [4]

- What do you mean by 'normalization condition of a wave-function. c) [1]
- Normalize the wave function given by, $\psi(x,t) = \sin \frac{n\pi x}{L} e^{-i\omega t}$ in the range 0 < x < Ld)

 $[n \rightarrow integer, L, \omega \rightarrow constants]$

約樂QQ

[2]

[1]

[2]

[3+1]

[1]

[2]